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Free Hopf modules and bimodules over a bialgebra are studied. We investigate a
duality in the category of bimodulesin this context. Thisgivesthe correspondence
between Woronowicz's quantum Lie algebra and algebraic vector fields.

1. INTRODUCTION

We are interested in comparing the Woronowicz (1989) quantum Lie
algebra for a quantum group with the algebraic vector fields for the first-
order differential calculus over a unital associative algebra (Borowiec, 1996,
1997). Dualizing a bicovariant bimodule of one-forms in the category of
bimodules over aHopf a gebrawith bijective antipode, one obtains a bicovari-
ant bimodul e of algebraic vector fields, called a Cartan pair (Borowiec, 1996).
Asin the Lie algebra case, the Woronowicz quantum Lie algebra consists of
theleft or right invariant vector fields. Since the work of Woronowics (1989),
bicovariant differential calculi have become the subject many investigations
(Bernard, 1990; Durdevich, 1996, 1997, 2000, Klimyk and Schmudgen, 1997;
Magjid, 1998; Oziewicz, 1998). Construction of vector fields for bicovariant
differential calculi on Hopf algebras has also been discussed (Aschieri and
Schupp,1996; Pflaum and Schauenburg, 1996; Schauenburg, 1996).
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The problem of the generalization of the Lie module to quantum and
braided categories is till open. Among several propositions we mention
Pareigis (1996) approach to Lie algebras in the category of Yetter—Drinfeld
modulesand several approaches based on variety of braided identitiesgeneral-
izing the Jacobi identity(Oziewicz et al., 1994; Nishimura, 1999; Bautista,
2000).

In the sequel, k is a field. We shall work in the category of k-spaces,
al maps are k linear maps, and the tensor product is over k. Given k-spaces
U and W, Hom (U W) denotes the k-space of all k-linear maps from U to
W, Denote by U = Hom (U, k) the k-linear dual of U. For ® e Hom (U,
W), we denote by & e Hom(W, U) its linear transpose. Dealing with finite-
dimensional k-spaces, we shall use the covariant index notation together with
the Einstein summation convention over repeated up contravariant and down
covariant indices. If { g}V denotes a basis in a finite-dimensional k-space
V. thenv = uUe e V.

An algebra, means an associative unital k-algebraand a coal gebrameans
a coassociative counital k-coalgebra. If A = (A, m, 1) is an algebra, then A%
denotes an algebra with the opposite multiplication: a -, b = ba Let C =
(C, A, €)be a coalgebra with comultiplication A and counit e. The Sweedler
(1969) notation is A(a) = a3y @ a,). For aleft (right) comultiplication in V,
we shall write Ay (V) = Vi_1 ® Vg (v A(V) = V() @ V(). By C we mean
an opposite coalgebra structure with A°P(a) = a, & a). For a bialgebra
B, one can form new bialgebras by taking the opposite of either the algebra
or/and coalgebra structure, e.g., B has both opposite structures.

2. PRELIMINARIES

Let A be an agebra. Assume that a finite-dimensional k-space V is a
left A-module, or equivalently, it is a carrier space for representation A of A.
This means that the left action my: A® V - V can be written in terms of
a unita k-algebra homomorphism \: A — End V, which, in turn, by the use
of abasis {g}d™ of V, can be rewritten in matrix form A\ (a)e = m,(a ®

&) = NMa)e,
Oa,be A M1 =3,  Mfab) = M (2\(b) N

The same matrlx representation uniquely induces the trangpose right multipli-
cation ym = my: V® A - V on the dual vector space V:

my(ef ® a) = X(a)e = A (a)e™ 2

whergthe eared ements of thedual basisin V. This dgfi nesan anti representa-
tion A: A - End V given by the transpose matrices A(a): A(ab) = A(b)A(Q).
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Alternatively, one can say that A\: A® — End V is a representation of the
opposite algebra A%, i.e., it defines a left A°P-module structure on V.

For an algebra morphism T: A’ - A and a left A’-module action my:
A" ® V - V, one defines its pullback as a left A-module action m_ =
T™(M): A®V - Vby

M) =me(T®id, a- v=T@-v or M=N\T (3

When T is an antihomomorphism (i.e., @ homomorphism from A into A’°P),
then the pull/back T*(my) is a right A-module action.

Let C be a coagebra. A left C-comodule structure on V is determined
by matrix-like elements

leC, ik=1....,dmV, ALY=L"P®L, €LY =25
4

These define the left coaction or corepresentation
AV - COYV, Age) = (B)-1 D (8 = L&' ® ey ®)

The same matrix elements L e Cinduce the transpose right comultiplication
VA=AV 5 V® C,

Av(E) = (B ® (Mg = €"® LK (6)

on the dual vector space;j/ (Borowiec and Vazquez-Coutifio, 2000). Alterna-
tively, one can say that Ay defines aleft coaction of the coopposite coalgebra
CP on V.

For a coalgebra morphism T: C - C’ and a left C-comodule coaction
AV - CQV, one defines its pushforward Af = T«(A):V - C' ® Vas
a left C’-comodule coaction such that

T(A) = (T®id) o AL or Lk = T(LHY (7

If T is an anticoalgebra map, then its pushforward T.(A,) is a right C’-
coaction on V.

3. YETTER-DRINFELD MODULES

Our basic references on Yetter-Drinfeld (22) modules are Montgomery
(1993), Radford and Towber (1993), and Schauenburg (1994). 22 modules
are known also under the name of Yang-Baxter or crossed modules. Various
modules and comodules over a bialgebra are our objects of investigation.
The most substantial results are obtained for the case of bialgebras with the
bijective antipode (quantum groups).
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Definition 3.1 (Yetter—Drinfeld module). For bialgebra B, a left-left
Yetter—Drinfeld module is a k-space V = (V, my, Ay) which is both a left
B-module and a left B-comodule and satisfies the compatibility condition

DaeBandveV, amv-n®agvy = @y Vndr @ (@ - Vo
o amLiNin(ae) = L (@) )

We denote by B2 the category of left—left 227 modules over B. Simi-
larly, the right—right 22 module condition is

Vo @ Vade = (V- ag)o ® anV - (a@)a)
or amRpM@ar) = RMappk(am) 9

where ,m(g, ® a) = pR(a@)e, and \A(e) = e, ® RY denotes the right multi-
plication and comultiplication in V. In addition, 278 denotes the category
of right—right 222 B-modules, the category of left—right Yetter-Drinfeld B-
modules is denoted by 528, and the category of right—left 2 B-modules

by 827e.

Remark 3.2. The following categories can be identified in the formal
sense:

B2 = poony 7B =Py G0 = 78R D (10)

i.e,if atriple (V, m_, A)) isan element of the first category, then it becomes
automatically (after suitable reinterpretations) an element of the remaining
categories. For example, denoting by AfP(e) = e, ® Lg' a canonical right
B comodule structure on V associated with A, one sees that
(V. M, APP) € g™,

Nontrivial category equivaences have been found for the special case
when B is a Hopf algebra with bijective antipode.

Proposition 3.3 (Radford and Towber, 1993, p. 265). Suppose that B is
a bialgebra with bijective antipode S. Then:

(i) (Woronowicz, 1989) (V, m_, A) — (V, (S H*(m), S(A))) describes
categorica isomorphisms

B =278 ad  g27° =Py, (11)
@ii) (V, m_, Ag) ~ (V, m_, S(AR)) describes categorical isomorphisms
/7" = 87 (12)

Corollary 3.4. Combining (10) and (12), one gets the category
equivalences
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877 > (V,m, A) = (V,m, (S(AP) e By
778 5 (V, Mg, L) = (V, Mg, (ST)-(ARD) € 2788 (13
These follow from the fact that S is an antipode of B,

Proposition 3.5. Let (V, m_, A) be a left module and left comodule
over abialgebra B, with dimV < . Then (V, m_, A|) B2 if and only if
(V. mA) e 278

Proof. Substituting Li, = R<and A}, = pk into equation (8), one gets (9).
A right-handed version of the proposition also holds. =

Remark 3.6. A 27 structure on V generates the quantum Yang—Baxter
operator.# € End (V ® V). For example, if (V, ym, vA) € 278, one gets

(e ® a) = pl(RNen ® g

4. FREE COVARIANT BIMODULES

In the sequel, V is afinite-dimensiona k-space spanned by free genera-
tors &, ..., &, n=dmV.

We consider left (right) free A-module M represented as A Q@ V (V &
A), where the module structure is realized by the left (right) multiplication
in A. Following Sweedler (1969), we shall use the notation V, = V ® A and
AV = A ® V for the right and the left free A-modules generated by a vector
space V. We do not assume an invariant basis property for algebra A. This
means that the number of free generators is not necessarily a characteristic
number for a given free (left or right) module. In other words, one can have
a left A-module isomorphism A ® V = A ® W with dimV # dimW.

The unit 1 = 1, of A enables us to define a canonical inclusion

Vov=vR1leV, and OxeVa, x=63x (14

where components X e A are uniquely determined with respect to a given
basis {e}. Any basis {e} in V determines a set of free generators {§ = €
® 14} in the module V.

Lemma 4.1 (Schauenburg, 1994; Borowiec et al., 1997). Let V be a
finite-dimensional l-space. The following are equivalent:

(i) A left A-module structure on a free right module V, such that it
becomes an A-bimodule.

(i) A unital k-algebra map (so-called commutation rule) A: A - A®
End V.

(iii) A k-linear map (so-called twist) A: AV = V, such that
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ALl®V) =v®1,
Ao (M®idy) = (idy ® m) o (A ® idy)  (ida ® A)
Proof. By uniqueness of the decomposition (14), one can set in an
arbitrary basis {e} of V,
A@a=a (@®1)=A@a®ea)=ea® A (15)
Properties of the k-algebra map
(D) =2k, Alab) = Ah(a)AR(b) (16)
as well as (iii) are to be verified. =

A right-handed version of the lemma above: A right commutation rule
d: A - A® End V givesrise to aright multiplication on »V,

(1®e) a=da)@e, k@ab) = PR()Piy(b), K1) = 8k
17
This implies that ® is an algebra map from A® into A ® End V.
If Cisacoalgebra, then oV isaleft free comodule with acomultiplication

determined by that in C, i.e., Ay = A ® idy. The counit € in C enables us
to define a projection map ey: cV - V by ey (X @ g) = €(X)e,

ev(@-X) = e@ey(x), (id® ey) oAy = id (18)

Let B be a hialgebra. In this case gV is a (free) left module and a
(free) left comodule with multiplication and comultiplication satisfying the
following compatibility condition:

Oa e Bandx € gV, Agv(a - x) = A(@)Agv(X) (19)

@ %)y ®@ (@ X = aw - X-1 @ X0

This condition differs from the 2 conditions and defines a left Hopf B-
module structure on aleft free module gV. Similarly, Vs becomesautomatically
aright free Hopf B-module.

Remark 4.2. B and B®® have the same algebra structure. Therefore we
can treat gV as a left free Hopf BP-module with coaction ARY = AP ®
idy. A k-space V generates a free left (right) either B- or B®P-Hopf module
structure on gV (Vg).

Remark 4.3 (Sweedler, 1969). In the case of a Hopf algebra H, any left
(right) Hopf H-module is l€eft (right) free, i.e., it has the form 1V (V4), with
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V being (not necessarily a finite dimensional) vector space of left (right)
invariant elements.
A left Hopf B-module which is at the same time a B-bimodul e satisfying

Ox e gV and a e B, Agv(X - @) = Agv(X)A(a) (20

is called aleft covariant bimodule (Woronowicz, 1989). The right B-module
structure on gV can be used to generate, via the projection map (18), a right
B-module structure on the vector space V:

p@)V = e ((1®V) - a) (21)

Due to (18) and (20), one obtains the following relationship between right
module structures on V and on gV:

(a ® V) : b = ab(l) ® p(b(z))v (22)

This means that the converse statement is also true: any right B-module
structure p on V generates a left B-covariant bimodule structure on aleft free
Hopf B-module gV. Similarly, the formula

@®V) - b = aby ® p(by)v (23)

induces a left covariant B<°P-bimodule structure on Vg. In other words, there
is a bijective correspondence between right module structures on V and left
covariant either B-or B*P-bimodule structures on gV. For a free right B-
covariant bimodule Vg, one gets instead

a- (v®b) = Mag)v® apb (24)

where \ denotes the left B-module structure induced on V.
The following version of Lemma 4.1 is essentially due to Worono-
wicz (1989).

Proposition 4.4 (Woronowicz 1989). Let V be a finite-dimensiona k-
space and B be a k-bialgebra. Then the following are equivaent:

(i) A left B-module structure \: B - End V.

(ii) A left B-module structure on a right free Hopf B-module Vg such
that it becomes aright (free) B-covariant bimodule. M oreover, the commuta:
tion rule (16) takes the form Al(a) = N(an))ap). Conversely, A = € o Al
(iii) A left B (=BP)-module structure on a right free Hopf B®P-module Vg
such that it becomes aright (free) B*°P-covariant bimodule. In this case, the
commutation rule takes the form (A®)i(a) = M(ag)am with N = € ©
(AP

Proof. (iii) is a B version of (ii), (22) and (23). Taking into account
(15) and (24), one calculates a - (& ® 1) = & ® Al(a) = Nlag)e @ ap) =
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& ® M(ag)ag. Hence Ai(a) = M(aw)ap). Applying € to the both sides
gives € ° Al(@) = N(ame(@)) = Ada). =

Remark 4.5. The left—left 22 condition (8) can be now rewritten as
An@)LE = Li(A*P)R(a)

A similar statement holds true for left (free) covariant bimodules. A B-
bimodule which is at the same time a B-bicomodule satisfying left and
right Hopf B-module conditions together with the left and right covariance
condition is called a Hopf B-bimodule or, in the terminology of Woronowicz,
a bicovariant bimodule.

Assume that M = gV is a l€eft free bicovariant bimodule. In this case,
apart from the right multiplication (20), one has a right comultiplication

mA: BV - BV®B suchthat yA(a- x-hb) = A@uAMXA(b)
(25)

and the bicomodule property
(id ® yA) o Ay = (Ay @ id) o yA (26)

Here, An(a ® V) = ay) ® ap) ® v denotes a free left comultiplication
in M. In this case, the right comultiplication yA in M isinduced from a right
comultiplication yA in 'V,

AL ® V) =18 yAV) (27)

The structure theorem (Drinfeld, 1986; Woronowicz, 1989; Yetter, 1991)
asserts that the vector space V equipped with the right multiplication (21)
and theright comultiplication (27) inherits aright crossed B-modul e structure.
Theinverse statement is also true: aleft (or right) crossed B-module structure
on V generates a left (right) free Hopf B-bimodule structure on Vg (V).

Remark 4.6. Due to Sweedler’s (1969) theorem, any bicovariant bimod-
ule M over aHopf algebraH isfreeg, i.e, it can be represented as U or Wy,
where U = (U, ym, yA) € .92 (resp., W= (W, my, Ay) € H22) denotes
acrossed bimodule of left (resp. right) invariant elementsin M, Remark 4.3.
If the antipode S of H is bijective, then the following holds: U = W, ym =
(S H*(my) and wA = S(yA), Proposition 3.3 (Radford and Towber, 1993).

5. BIMODULES DUAL TO FREE HOPF MODULES

For an arbitrary left A-module M, one can introduce its A-dual, a right
A-module "M = Mod (M, A), as a collection of all left module maps from
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M into A (Bourbaki, 1989). The evaluation map gives a canonical A-bilin-
ear pairing
Oxe M and Xe ™™, @a-x,X-by=a-Xx -beA (28)

Similarly, for aright A-module N, NT = Mod(N, A), a collection of all
right module maps, seen as aleft A-module, is caled an A-dual of N. In this
case, we shall write a canonical pairing

OyeN and Y e NT, {a-Yy-by=a-Yy -beA (29)

For free, finitely generated modules, one can repeat the dual basis
construction.

Lemma 5.1 (Bourbaki, 1989). Let V be afinite-dimensional k-space. A
dua module to the left (right) free module AV (Va) can be represented as

Va (),
T(wV) = Vo and VA AV, (W)= av and (VA = Va

The canonical A-bilinear pairing (( , )): A~V ® V, - A can be rewritten
by means of the k-bilinear pairing (, ) VO V - Ik,

aQa e and Vb e Va, (30)
(a® a,v® b)) = ab(a, v) = aba(v)

Assume now that B is a bialgebra and we have done a right coaction
vAIV - V& B. Theimage of A belongs to aright free B-module Vg. On
the other hand, the transpose left action (A: V - gV takesits valuesin gV,
B-dual to V. Thissuggest apossibility for comparison between both pairings:

Lemma 5.2. Let B be a Hopf algebra with antipode S and a finite-
dimensiona space V is a right B-comodule with a coaction yA. Then

veV and aeV,  1ga, v) = (VA(Q), SGA™)V) (31)

Proof. It is enough to check (31) on basis vectors due to (4), (7), (30)
and using the properties of the antipode,

(VAE), S(A™)(E)) = (R ® ¢, &, ® SRM) = RYR) = 13 =

If M is an A-bimodule, then "M = Homs (M, A) can be equipped in
a canonical bimodule structure (Borowiec, 1996) by

{x,a-X-b)y=Xx-a-b={x-a X)) b (32

We call the bimodule TM a left A-dual of M. Similarly, one can define aright
dual MT = Hom(_'A)(M, A)
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Let Vi be aright free bimodule with a left module structure given by
the commutation rule (15), Then its right A-dual AV is a left free bimodule
with the transpose commutation rule,

(1®e a (6®1) = (1€ e, ® AM(a)))

= (&, enAl"(@)= AK@a)
(1®ea (6®1))=(1®6)-ae®1)

= ((Ph(a) ® ", & ® 1)) = DKa)

Therefore, ® = A. Assume further that A is a bialgebra, hence A has the
form (24)

A(a) = Maw)(ap) (33)

for some representation N of A in V. This means that V, is aright A-covariant

Hopf bimodule generated by (V, \). Thus the transpose commutation rule

d(a) = N(ag)a, makes AV aleft AP-covariant Hopf bimodule (23).
These prove our main result:

Main Theorem 5.3. Assume V is a finite-dimensional vector space and
Ais an agebra

(i) Let Vi be aright free A-bimodule whose left module structure is
given by acommutation rule A: A -~ A® End V. Then its right A-dual (V)"
= AV is aleft free A-bimodule with the transpose (right) commutation rule
b = A.

(if) Assume further that A is a bialgebra and V, is a right A-covariant
bimodue generated by the representation A\: A - End V, (33). Then its right
A-dual AV is a left (free) AP-covariant bimodule generated by (V, X).

Theorem 5.3 suggests that dualizing a bicovariant bimodule over a
bialgebra B, one obtains, in general, a B®P-covariant bimodule which is not
necessarily bicovariant unless B = B®P. However, in the case of the quantum
group we get the following result.

Corollary 5.4. Let B be a bialgebra with a bijective antipode (quantum
group). Let gV be a bicovariant B-bimodule generated by a right-right 27
module (V, ym, yA) e 2Z8. Then its left B-dual Vs is aright (free) BoP-
covariant bimodule generated by (V, ,m). Due to Corollary 3.4 and Proposi-
tion 3.5, it can be also equipped with a bicovariant BP-bimodule structure
generated by (V, ym, (S9. (VA®) e BBBzz. Thus the identity (31) is
satisfied.

Corollary 5.4 corrects the claim by Aschieri and Schupp (1996) and by
Aschieri (1999) that general vector fieldsfor abicovariant differential calculus
form a bicovariant bimodule over the same Hopf algebra.
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Corollary 5.4 can be relevant for adapting the vector field formalism
(Borowiec, 1996, 1997) to the case of differential cal culus on quantum groups
(Woronowicz, 1989).

Consider aright-covariant differential calculusd: B — I" over abialgebra
B with values in a free right covariant B-bimodule I" of one-forms. Thus I'
= Vj and the left B-module of right invariant elements V = (V, \) generates
the left B-module structure of T', (24). A derivation d: B - I' is said to be
right-covariant if d isaright comodule map (Woronowicz, 1989, pp. 129-131,
conditions 4 in Propositions 1.2—1.3);

rAed=({dXid)o A (34)

Oziewicz (1998) considered an extension of a derivation, i.e., a short exact
sequence of the differential algebras (algebras with derivations), in a similar
spirit to Eilenberg's (1948) introduction of a bimodule over general algebra
in terms of an extension of an algebra. Extension of a derivation and/or
coderivation gives the seven Leibniz conditions and it appears that the Woro-
nowicz conditions of the bicovariant derivation d, like (34), areamong Leibniz
conditions (Oziewicz, 1998, p. 216, formula (5.2)). In particular, (34) follows
if one consider an extension of zero coderivation of B.

The right dual T'T = 3V, where the generating space (V, X) is aright B-
module, is a left B°P-covariant bimodule. The generalized Cartan formula

Xo(f) = ((X, df)) (35)

allows us to associate with any element X e I'' the corresponding k-linear
endomorphism X® € End,B. This gives the action §: I'" - End,B which
satisfies the axioms of a right Cartan pair (Borowiec, 1996, 1997).

_ Proposition 5.5. With the assumptions as above, for any element a e
V, the corresponding endomorphism (1 ® a)®: B — Bisaright comodule map,

Ao(1®a) = (1® ) Qid) oA (36)

Proof. Let {e} be any basisin V and {€} the dual basisin V. Define
the generalized derivatives 9' € End.B with respect to a given basis {g} by

J=(1® d)y

Then df = ¢ ® §'f. Substituting this into equation (34) and comparing the
coefficients in front of the same basic vectors gives rise to

Oi, (0fw) ® fo) = (0'F) 1y @ (9'F) )
which is equivalent to (36). m

Let B be a Hopf k-algebra with bijective antipode. Consider a \Worono-
wicz bicovariant differential calculus d: B — I', where I" is B-bicovariant
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bimodule of one-forms. Thus I' = Vg and (V, my, Ay) € 8% denotes a
crossed bimodule of the right invariant elements of I', Remark 4.6. Dualizing
the bimodule of one-forms, one obtains a B®P-bicovariant bimodule (I')" =
sV of vector fields, where now, by Corollary 3.4, (V, My, (S )-( A%P)
7285 denotes the crossed module of the Woronowicz |eft invariant vector
fields. The quantum Lie bracket structure on V isinduced by the Yang—Baxter
operator (Woronowicz, 1989).

APPENDIX

We give here an alternative, i.e. by direct calculations, proof of Theorem
5.3 ii). For this aim, it suffices to check that the right mutliplication (cf.
(23-24))

(1® a)a=ay ® Nap)a (A1)

and the left comultiplication (see Remark 4.2): A, y(b ® o) = b @ by @
a in AV are related by the left A®P-covariant condition (cf. (20))

Ag(1® a)a) =A,u(1® a)A®(a) . (A2)
Calculation of the left-hand side gives
Ail(ag @ Maw)e) = (@@)e ® @p)e © Mag)e . (A3)
From the other hand similar calculations for the right-hand side yield
2y ® (1® a)ay = ay ® @wa @ MEw)w)e - (Ad)
The proof is finished since

(@2)o @ (ap)a @ agy = az) @ (aw)we) @ (aw)a (AS5)

due to the coassociativity property; (A & id) o AP = (id @ AP) o AP,
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